Magnetostriction: fundamental principles and novel magneto-strictive materials

A. del Moral
Departamento de Magnetismo, Dpto. Física de Materia Condensada & ICMA, Universidad de Zaragoza & CSIC, 50009 Zaragoza, Spain

Magnetostriction and magnetoelastic coupling

When any magnetic solid acquires a magnetization, \mathbf{M}, under the application of a magnetic field, \mathbf{H}, at the same time its crystalline (or morphous) lattice is deformed, a phenomenon called magnetostriction (MS from hereinafter). Therefore this is a general effect suffered by all solid matter, once it becomes magnetized. It therefore appears for any kind of magnetic materials: diamagnetic, paramagnetic, ferromagnetic, anti-ferromagnetic, ferrimagnetic, superconductors, etc. It does not matter if the solid is a metal or an insulator, what only matters is if the atoms either acquire an induced magnetic moment or they have a permanent one. By Hoke's law the deformation suffered is proportional to the material size, say l, and therefore it is convenient to express the deformation by the relative variation $\lambda = \Delta l / l$, called the linear MS. In a crystal λ is doubly anisotropic: it depends on the crystallographic direction of measurement and on the direction along which the magnetization, \mathbf{M}, is oriented by the applied magnetic field, \mathbf{H}. Because MS depends on the crystalline directions of λ and \mathbf{M} (\mathbf{B} and \mathbf{C}, respectively) we have to specify MS as $\lambda(\mathbf{C}, \mathbf{B})$ (Fig. 1). But also in a poly-crystalline material, formed by small crystallites more or less randomly distributed, the MS measured along \mathbf{B}, called the parallel MS, λ_{\parallel}, is quite different from that measured along the perpendicular direction, termed the perpendicular MS, λ_{\perp}. It can happen that $\lambda_{\perp} \approx -\lambda_{\parallel} / 2$, but usually this is not the case and then the volume of the solid changes by the amount $\Delta V / V = \lambda_{\parallel} + 2 \lambda_{\perp}$, called the volume MS. On the other hand, the shape (or form of the unit cell) of the material is modified if $\lambda_{\parallel} \neq \lambda_{\perp}$, and a measure of this effect is the difference $\lambda_t = \lambda_{\parallel} - \lambda_{\perp}$, called the shape MS. Both MS's appear in crystalline, polycrystalline and amorphous solids.

The key questions are: why is this phenomenon so general, and what is the physical mechanism of MS? We know that atoms possess two main sources of magnetic moment: the orbital electronic motion around the nucleus, which gives rise to the orbital angular momentum, \mathbf{L}, and the spin, \mathbf{S}. Classically the orbital current produces an magnetic field, \mathbf{B}_L, where the spin magnetic moment, $\mathbf{m_S} = -\mathbf{S} \mu_B$ has an energy $-\mathbf{m_S} \cdot \mathbf{B}_L$. This is a relativistic effect, and because $\mathbf{B}_L \sim \mathbf{H}$, the energy becomes $E_{SO} = x T \mathbf{S} \cdot \mathbf{S}$, which links the spins to the orbits, e.g. in a ferromagnet. This interaction is called the spin-orbit coupling, and is the first ingredient of MS. By it when \mathbf{S} (or \mathbf{M}) is rotated by the torque $\mathbf{\Gamma} = \mathbf{m_S} \times \mathbf{B}_L$, it is dragged on. In a ferromagnet this is very important because the spins become ordered below the Curie temperature. But there is another equally important ingredient, the interaction which couples the orbit to the lattice, if we want the lattice to deform when their atoms are magnetized.

Let us consider a ferromagnet (FM) or antiferromagnet (AF) in order to fix ideas. For transition metals (TM), notably Fe, Co, Ni and Mn, or their ions (in FM insulators) and for rare earth (RE) metals and insulators, their respective atomic 3d and 4f shells are incompletely filled, and therefore they possess spin and orbital momenta, giving rise to a magnetic moment, $\mathbf{m} = \mathbf{m_L} + \mathbf{m_S}$. In magnetic solids there exists a strongly inhomogeneous electric field, called the crystal electric field (CEF),
whose gradients interact with the ion magnetic electrons, giving rise to a splitting of the ion energy levels while still keeping some degeneracy (CEF energy levels). The splitting is purely dictated by symmetry: e.g. in cubic symmetry the levels are $e_g (x2)$ and $t_{2g} (x3)$. This remaining degeneracy is quite important for MS, because otherwise $\langle L^2 \rangle$ is zero. In the solid, 3d and 4f electrons have orbital wave-functions, φ_{orb}, rather different from those of the free atoms (or ions), as a consequence of the CEF potential which admixes the free atom states $|M_L>$ (M_L is the quantized projection of \vec{L} along some crystal symmetry axis, OZ). So the electronic charge distribution (i.e. $|\varphi_{orb}|^2$) is determined by the symmetry entourage of the ionic site and is very anisotropic. Most importantly is that φ_{orb} changes when \vec{L} rotates, with the result that the CEF energy changes, giving rise to the magnetocrystalline anisotropy (MCA), by which the crystal energy changes with the \vec{M} direction. 3d shells are little screened from the CEF ("medium" to "strong" CEF) whereas 4f ones are much more screened ("weak" CEF). For the former, the ground state φ_{orb} is formed by almost pure 50% admixtures of $| \pm M_L >$ states and therefore the quantum mechanics expectation value $\langle L^2 \rangle$ is rather weak (an effect called quenching). Contrarily for the RE metals quenching is very weak, i.e., $\langle L^2 \rangle$ is weakly reduced. FM or AF order in solids is the result of the exchange interaction between electrons, with energy $E_{ex} = -2J \vec{S}_i \cdot \vec{S}_j$, which is clearly isotropic. Very important for MS is the fact that J (exchange integral) depends on the atom distance. This interaction gives rise to the spontaneous magnetization, \vec{M}_S. Therefore when \vec{M}_S (or \vec{S}) is rotated within the crystal by the \vec{L} torque, the ionic charge cloud is dragged on and also distorted, with the consequent distortion of the ion entourage: so the crystal is deformed. This deformation is the so-called single-ion CEF magnetostriction and it requires the rotation of \vec{M}_S in some way: either by rigid vector rotation or by domain wall displacements that entrain \vec{M}_S rotation. This happens for 70.5°, 90°, and 109.5° domain walls (DW) in cubic crystals (180° DW displacement can not produce MS, which is the case for uniaxial crystals when they are magnetized along the easy magnetization direction). In elasticity theory we know that the deformation, or more properly the strain ε_{ij} (a tensor), is the medium response to an external stress, σ_{ij}, the relationship being governed by Hooke’s law: $\sigma_{ij} = c_{ijkl} \varepsilon_{kl}$ (repeated indices summation assumed), c_{ijkl} being the elastic constants. Therefore we can equally think that an internal magnetoelastic (MEL) stress, B_{ij}, develops under \vec{L} rotation and gives rise to the MS and, in accordance with elasticity theory, the MEL energy gain is given by $F_{ms} = -B_{ij} \varepsilon_{ij}$. When the solid deforms under the MEL stress, there is a cost of elastic energy, $E_{el} = (1/2)c_{ijkl} \varepsilon_{ik} \varepsilon_{jk}$, and an equilibrium MS, for short $\lambda = B / c$, is attained when the full energy is minimized. The B_{ij} are also called MEL constants and the magnetic moment, m, coupling to the strained lattice, is called MEL coupling. The number of strains, and so of MEL constants, is dictated by the crystal symmetry alone. The irreducible strains are the minimum number of them, spanning all unit cell deformations compatible with symmetry. They are four for cubic symmetry (see fig. 2): volume dilation ε^α (a), tetragonal distortion along a cubic axis ε^β (b), orthorhombic deformation of {100} planes ε^γ (not shown in Fig. 2), and shear of the <100> axes ε^δ (c).
Invar effect, magnetostrictive superlattices and "giant" magnetostriction materials

There is a second kind of MS due to the spatial dependence of the exchange (EX) interaction, i.e. \(\partial J(r) / \partial r \), called exchange (EX) MS. Because \(J S_i S_j \) is isotropic, EX MS produces just a volume deformation (VMS), given by \(\omega_{\text{ex}} \sim (\partial J(r) / \partial r)/B \), where B is the bulk modulus. Since this VMS shows up spontaneously in the thermal expansion (THE) when the temperature approaches from above the Curie temperature, \(T_c \) it gives an additional contribution to the lattice THE, that manifests itself as an anomaly of the HE coefficient, \(\alpha_v = 3 (1/L)(\partial L / \partial T) \). It also manifests itself in an increase of \(\lambda \) beyond its technical saturation, \(\lambda_S \), a phenomenon called forced MS, where fundamental many-body electron repulsion is involved and which varies with H linearly. It can happen that the spontaneous VMS is positive and of such a magnitude that it fully or partially cancels the lattice THE, a phenomenon known as the invar effect, and by which the material does not contract below \(T_c \). Obviously this effect has enormous consequences or applications, where materials with "null" effective a are required (watches, optical interferometers, condensers, standards, etc.). Examples of invar materials are the Fe-Ni, Fe-Ni-Cr, Fe-Pt alloys, certain compositions of Fe-Ni-Mn alloys, Ni3Al, MnSi, amorphous Fe-B and intermetallics RECo2, RE2Fe14B and Dy2Fe17 (Fig.3).

Theoretically it can be shown that \(\omega_{\text{mag}} \sim T^2 \), precisely the same dependence as that for the lattice

Fig 1 \(\lambda([111], (111)) \) MS isotherms vs. applied magnetic field for the cubic intermetallic ferromagnet TbAl2 (\(T_c = 115 \text{K} \)) [1].
thermal contraction, $\omega_{\text{int}}(T)$. Therefore compensation of the lattice THE takes place, or in other words $\alpha \approx 0$.

![Diagram](image)

Fig 2 Three of the possible “irreducible” MS strains for a cubic crystal (the orthorhombic one is not shown) [1].

![Graph](image)

Fig 3 Invar effect in the thermal expansion (THE) of the tetragonal hard ferromagnet Nd$_2$Fe$_{14}$B. Also shown is the lattice THE extrapolation (line) [1].

Currently vigorous research is been undertaken on MS in artificially periodic structures known as multilayers (ML) and superlattices (SL), formed by alternative deposition of thin layers ($\approx 5 \times 10^3$ Å) of two magnetic materials. Because of the modification of the electronic structure, an interface MS is manifested at the interface (IF) of the two layers (in the SL the layers grow coherently, forming an artificial macroscopic lattice). Usually only one layer is magnetic (m), the m-m exchange being transmitted by the non-magnetic (nm) one. Because ML and SL are grown upon a substrate, this restrains the MS distortion, and therefore experimentally one measures the MEL stress. Néel (1954)
showed that the IF MEL stress has the form B_{IF}/t_m, where t_m is the layer thickness. Therefore this stress becomes as important as the bulk contribution for very thin m-layers, and can be of opposite sign. When the growth is epitaxial (i.e. the lattice constants $a_m = a_{nm}$ in the SL), which can be achieved using sophisticated fabrication techniques (molecular beam epitaxy, laser ablation and sputtering), the m-layer is under mechanical stress, which induces enormous misfit strains (up to 10%), when the bulk materials have different lattice constants. In such a situation the magnetoelastic coupling becomes non-linear, and B_{vol} is modified by a stress of the form $B_{NL,E_{mf}}$ (the MEL free energy is now quadratic in the strain), which can be as substantial as B_{vol}.

![Diagram](image)

Fig 4 Tetragonal MEL stress, B' vs. temperature (◦ points) for the ultrathin hexagonal superlattice ($Ho_{9}/Y_{6}\times 100$. The difference from the bulk Ho one, B'_{bulk} (x points) is due to interface and nonlinear MEL stresses. Also shown is the quotient B'/B'_{bulk} (ε points) [1].

The NL MEL coupling is also well manifested in the elastic constants, where it gives rise to the appearance of a non-symmetric or rotational strains, ω_{ij}, which differ from the usual symmetric ones ($\epsilon_{ij} = \epsilon_{ji}$) in that $\omega_{ij} \neq \omega_{ji}$. These strains give rise to the rotational invariance of the MEL energy, in the sense that the MEL anisotropy that originates from the $\overrightarrow{\omega}_{\text{rotation}}$ is the same as the one produced by an imposed external rotational deformation of opposite sense. The existence of the three MEL stresses has been experimentally observed in hexagonal symmetry, SL, RE/SP (SP= Y, Lu, Sc) (see Fig.4) and also in SL and ML made of cubic transition metal, such as TM/M, where TM= Fe,Co,Ni and M is a noble metal or Cu. The RE/SP SL are important from a basic point of view, because RE magnetic moments are well localized and CEF MS is very amenable to study. However, because RE metals are FM or helically ordered only at rather low temperatures (Gd, Dy, Tb and Ho, although more complex modulated magnetic structures do appear), they are of not much use for applications. Instead the ferromagnetics TM/M ML, with high Tc and weak magnetic anisotropy, may have wide application as MEL transducers (actuators and sensors) within nanostructured devices.
MS in soft transition metals and their alloys is relatively small (expressed in $10^{-6} = 1 \mu \text{st}$ units), with $\lambda_s \equiv \lambda_t \approx -8.34$ for Fe and Ni, ≈ -22 for (FeCo)$_8$B$_{20}$, and ≈ -30 for spinel ferrites (TM$_x$Fe$_{1-x}$O$_4$, TM = Fe,Ni,Mn). An exception is the Co ferrite that has the very large value $\lambda(100),\langle 100 \rangle \approx 700$, where all values are at T. However, for the RE metals and their intermetallic compounds, MS is generally very large, up to $\approx 1\%$ (thousands of $1 \mu \text{st}$) at low temperatures, because of the RE$^{3+}$ ion large quadrupolar electric moment [$Q \sim J(J-1/2)$], which interacts with the inhomogeneous CEF, albeit this is more more shielded than in TM. The intermetallics, RETM$_2$ (TM=Fe,Co,Ni and Mn) with Laves-phase structure (the RE$^{3+}$ form a diamond lattice), show the largest it ever found (the so-called "giant" MS). Among these are, for example: TbN$_2$ (0.23% at 4.2K), NdCo$_2$ (-0.17% at 77K) and TbFe$_2$, with the largest room-temperature λ_s known (0.2%), reaching 0.4 % at 4.2K The problem for use in applications of these intermetallics is the large saturation magnetic field required, of $\approx 1\text{ T}$. However, cobining the opposite sign anisotropies of Tb$^{3+}$ and Dy$^{3+}$ in the compound Tb$_{0.27}$Dy$_{0.73}$Fe$_2$ (a material commercially known as Terfenol®), the saturation field is reduced down to $\approx 2\text{ kOe}$, still with a room temperature MS of 0.12%. This material is currently the most used for MEL transducers, and can be prepared in engineering amounts (Fig.5). But the largest MS ever measured is in TbMn$_2$, where $\lambda_t(40\text{K}, H=15\text{T})=0.6\%$ and $\omega_t(20\text{K}, H=15\text{T})=-1.6\%$ are certainly huge values. But other alloys not containing RE also show giant volume MS values of 0.5-1%, at near room temperature and at rather modest fields ($\approx 1-5 \text{ kOe}$), notably FeRh, FeRh$_{1-x}$Pt$_x$ and Hf$_{1-x}$Ta$_x$Fe$_2$, when the applied magnetic field induces an AF to FM transition. This makes them also very promising for applications.

As concluding remarks, we have seen that the most fundamental interactions in solids (exchange, CEF and spin-lattice), taken together with electronic structure, are involved in magnetostriction, and from which fundamental information can be extracted. Magnetostriction is a ubiquitous phenomenon in solid matter, spanning a wide range of values, between $\approx 10^{-8}$ (strongly correlated systems) and $\approx 10^{-2}$ (rare earth and other intermetallics). Applications in sensors and actuators, among many others, is n active reality and their use in nanostructured devices is also promising.

References